
Forgetting Bad Behavior: Memory
Management for Case-Based Navigation

Zsolt Kira, Ronald C. Arkin
Mobile Robot Laboratory

College of Computing, Georgia Institute of Technology
Atlanta, Georgia 30332–0250
{zkira, arkin}@cc.gatech.edu

Abstract— In this paper, we present successful strategies
for forgetting cases in a Case-Based Reasoning (CBR)
system applied to autonomous robot navigation. This
extends previous work that involved a CBR architecture
which indexes cases by the spatio-temporal characteristics
of the sensor data, and outputs or selects parameters
of behaviors in a behavior-based robot architecture.
In such a system, the removal of cases can be applied
when a new situation unlike any current case in the
library is encountered, but the library is full. Various
strategies of determining which cases to remove are
proposed, including metrics such as how frequently a
case is used and a novel spreading activation mechanism.
Experimental results show that such mechanisms can
increase the performance of the system significantly and
allow it to essentially forget old environments in which it
was trained in favor of new environments it is currently
encountering. The performance of this new system is
better than both a purely reactive behavior-based system
as well as the CBR module that did not forget cases.
Furthermore, such forgetting mechanisms can be useful
even when there is no major environmental shift during
training, since some cases can potentially be harmful
or rarely used. The relationship between the forgetting
mechanism and the case library size is also discussed.

Keywords: Mobile Robot Navigation, Case-Based
Reasoning, Behavior-Based Robotics

I. I NTRODUCTION

Behavior-based robotics, which advocates a tight cou-
pling between perception and action, provides good per-
formance in dynamic and unpredictable environments.
In this paradigm, the robot chooses a subset of behaviors
(a behavioral assemblage) to execute from a predefined
behavioral repertoire. The behavioral response is based
solely on current sensor data. Usually, the behaviors
are parameterized so that they can be applied in many

This research is supported under DARPA’s Mobile Autonomous
Robotic Software Program under contract #DASG60-99-C-0081. The
views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official
policies, either expressed or implied, of the sponsoring organizations,
agencies, companies or the U.S. government.

situations, and one problem is that these parameters
have to be optimized manually in order to achieve good
performance. This optimization requires both knowledge
of the robot behaviors and preliminary experimentation.
Furthermore, constant parameters may not be optimal
for environments that can vary widely.

In order to address these issues, Likhachev et al. have
added a Case-Based Reasoning (CBR) module to the
architecture [1][2]. Case-Based Reasoning is a method
where previous problems or situations, in addition to
their solutions, are remembered [3]. When the agent
encounters a similar situation again, it can adapt the
previous solution to the current one and use it (accom-
modating for the differences between the two situations).
The previous work applied Case-Based Reasoning in or-
der to learn which behavioral parameters to use in given
situations. At first the case library was created manually,
and later work extended this by adding the capability of
learning the cases from scratch. This enhanced system
was able to outperform the behavioral system without
learning, in which the parameters are held constant
throughout the environment. However, one problem that
arose is that the case library filled up relatively quickly.
Once the library was full, the best matching case to
the current environment was adapted, even if it was
drastically different. The adaptation changes both the
input and output values of the case, and if this adaptation
is done on a case that is tuned to an entirely different
situation, degraded performance can result. Ideally, the
robot should adapt its knowledge as the world changes
by creating new cases and removing old ones.

In that system the parameters that each case outputs
are optimized using a hill-climbing type strategy. How-
ever, the success rates of some cases do not converge,
or converge to the lowest possible success rate, and
hence do not provide good knowledge that can improve
performance. Despite this, they were previously kept in
the library and took up space which better cases could
have occupied. These cases could also potentially be
harmful if they are the most similar cases to the current

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2006 2. REPORT TYPE

3. DATES COVERED
 00-00-2006 to 00-00-2006

4. TITLE AND SUBTITLE
Forgetting Bad Behavior: Memory Management for Case-Based
Navigation

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Defense Advanced Research Projects Agency,3701 North Fairfax
Drive,Arlington,VA,22203-1714

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

8

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

situation in the library and are selected for use. Even
though this might be unlikely since the decision to use
a case is weighted by success, the alternative of not
using them might be even worse because cases which
are very different will be chosen and adapted.

The new work reported in this paper extends the
system by adding a mechanism by which such cases
are removed when the case library is full and a new
situation is encountered. The general hypothesis is that
a forgetting mechanism, in which cases are deleted
based on the strategies proposed here, can improve the
performance of a Case-Base Reasoning system. The
methods used here are not necessarily restricted to this
particular system, although some potential mechanisms
for case removal were discarded due to the peculiarities
of the applied system (some are mentioned later in the
paper). For example, how often a case is used or how
recently it has been used are features of cases that can
be determined in most Case-Based Reasoning systems.
Forgetting can be done by restricting the size of the case
library and deleting cases when the case library is full,
or it can be done periodically. In this paper we take
the former approach, although some investigation into
periodic forgetting has been done.

The importance of forgetting has been recognized
by other researchers, both in the machine learning
community and also specifically with respect to Case-
Based Reasoning [4][5]. Markovitch showed that in
some domains in machine learning, acquired knowledge
can have negative effects even when it is correct [4].
He also showed that randomly forgetting knowledge
can improve performance, and that this improved per-
formance cannot be equaled by not learning as much
in the first place. What is more striking is that this
is true when the removal of knowledge is performed
before testing without additional learning taking place.
In other words, correct knowledge is randomly removed
before testing, and this results in better performance.
Furthermore, heuristics determining what to delete can
achieve an even greater performance boost over random
deletion. Unlike our approach, forgetting in this research
occurred after the training phase, and different rates of
random deletion were tested.

Watanabe restricted the size of the case library in a
CBR planner used to manage power grids [6]. Several
properties of the cases were used in deciding what to re-
move, including the age of the case, its reliability, and its
similarity to the new situation. Forgetting cases seemed
to be advantageous over a system without forgetting,
especially in a changing environment. In other work,
Lieber studied criteria for comparing two case libraries,
which has implications in forgetting since it can be used
to determine the effects of removing a case [7].

Fig. 1. High-level structure of the learning CBR module. [2]

Of course, deletion can also have adverse effects on
competence, or the range of problems covered by the li-
brary, if done improperly. Smyth considered a forgetting
mechanism that took into account different categories
of cases (e.g.pivotal cases which are important for
the competence of the system) when deleting cases [5].
When compared to random or utility-based deletion, this
scheme did not degrade competence as much. Compe-
tence preservation and other issues will not be studied
here. In the case of autonomous robot navigation, the
problem space is not constant as the robot moves to
new environments, and hence competence preservation
is not necessarily an objective.

II. A RCHITECTURE

Our previous Case-Based Reasoning architecture for
robot navigation can be seen in Figure 1 [2]. The input
to the entire system is obtained from the environment
in the form of raw sensor data and the goal data. The
Feature Identification module analyzes this data and
outputs a feature vector for both spatial and temporal
characteristics of the sensor data. In order to calculate
the spatial feature vector, the space around the robot is
split into k uniform angular regions (in the current im-
plementationk is 4). The spatial characteristics involve
the traversability of each region, which changes as the
size of the largest obstacle cluster and the distance to
this cluster change. The temporal feature vector involves
normalized short-term and long-term robot velocities.

Once these feature vectors are obtained, the best
matching case is found through multiple stages of se-
lection. First, thebest spatially matchingcase to the
current environment is retrieved, where similarity is the
weighted Euclidean distance between the spatial feature
vectors of the environment and the case. A set of cases
is then selected randomly, where the probability of a
case being selected is taken from a Gaussian distribution
and is proportional to the difference between its spatial

similarity to the environment and the spatial similarity
of the best spatially matching case to the environment.
Out of this new set of cases, a similar method is used to
find the cases that are temporally matching. Finally, one
case is selected from the new set randomly, where the
probability of a case being selected is proportional to
a weighted sum of the case spatial similarity, temporal
similarity, and case success. Case success is measured in
terms of relative motion to the goal, and is interwoven
with a delayed reward mechanism. Refer to [2] for more
details.

After a single case has been chosen, a decision tree is
used in determining whether that case will replace the
case that is currently in use. The decision is based on
how long the current case has been active, the spatial
similarities, short-term relative motion, and long-term
relative motion (full descriptions appear in [2]). If it is
decided that a new case is to be used, another decision
is made whether a new case should be created based
on the temporal and spatial similarities and the success
of the selected case. This is where forgetting is added,
since in the previous system no new cases are created
if the library is full. In the new system, if it is decided
that a new case should be created and the library is full,
forgetting is applied. If there is no good candidate to
remove, then a new case is not created. If there is a
good candidate, it is removed and a new case is created
in its place.

Finally, there is an adaptation step in which the output
parameters of the cases are adapted according to a
method similar to hill-climbing. If the case improves
due to previous adaptations, the case is adapted in a
similar direction once again. If not, then the adaptation
direction is changed. There is also a second adaptation
step where the output parameters are altered based on
the short-term and long-term relative velocities of the
robot. Once completed, the case is applied by changing
the parameters of the current behavioral assemblage to
the ones specified in the new case.

This complete system was integrated into theMis-
sionLabsystem [8], which implements the Autonomous
Robot Architecture (AuRA) [9]. The CBR module was
integrated into theGOTO behavioral assemblage, as
depicted in Figure 2. The module’s input is sensor and
goal data, and the output is the behavioral parameters to
be used. The changeable parameters of the assemblage
include how much noise to add during navigation and
the sphere of influence of the obstacles.

III. F ORGETTINGSTRATEGIES

The forgetting mechanism that was implemented re-
sides in the “New case creation if needed” step in Figure
1. Various strategies are now presented for selecting

Fig. 2. Interaction between behavioral control module running a
GOTO behavioral assemblage and CBR unit. [2]

which case should be forgotten when the library is
full and the decision to create a new case is made.
Three strategies of forgetting have been employed. One
interesting idea that was ruled out is to use clustering
algorithms to compact the existing set of cases into a few
representative cases. In this work, however, this method
is not applicable due to the small size of the case library.
The strategies that were chosen are now described.

A. Random Forgetting

The simplest forgetting strategy is to pick a random
case to remove. Surprisingly, this can improve perfor-
mance in some domains [4]. Here, however, it was not
anticipated to improve performance due to many factors
specific to the domain. Since the case library is relatively
small and cases are improved through experience, the
chances of removing successful cases is very high. Also,
there are usually few redundant successful cases in the
library. Blindly removing cases will clearly result in
very few cases that are well trained, especially in a rich
environment in which the robot encounters many new
situations. Hence, this strategy is used as a baseline with
which other strategies are compared.

B. Metrics for Removal

Several heuristics or metrics can be used to estimate
which cases should be deleted. The metrics used include
performance, recency, and relative use frequency:

P(C) =
S(C)+1

2
(1)

whereP(C) is the performance of caseC andS(C) is
the success as defined in the previous work. Note that
S(C), the success of caseC, is bounded between -1 and
1.

R(C) =
1

tCe +1
(2)

where R(C) is the recency of caseC and tCe is the
time elapsed since the last application of caseC.

Pseudocode for Weighted Metrics Forgetting

If new case should be created and library is full
Case to be deleted =argminc∈L

(
WeightedMetric(c)

)
where WeightedMetric(c) =

(
w1 ∗P(c)+w2 ∗R(c)+w3 ∗U(c)

)
If WeightedMetric(Case)< thresholdWM then

Remove Case and create new one in its place
Else

Do not remove, and do not add a new case

TABLE I

PSEUDOCODE FOR THE WEIGHTED METRICS FORGETTING

STRATEGY.

U(C) =
tCa

∑C′∈L tC′
a

(3)

whereU(C) is the relative use frequency of caseC, tCa
is the number of time steps caseC has been applied, and
the denominator is the summation of time steps that all
current cases in the case library (L) have been applied
(note that this may be different from the number of time
steps the system has been running since cases may be
removed). The division serves to normalizeU(C) so that
it is bound between 0 and 1.

For all of these metrics, higher numbers indicate
better cases which should be less likely to be deleted.
Some functional combination of these metrics (e.g. a
weighted sum) can be used to determine which case
to replace when a new situation that is dissimilar to
any other case appears and the case library is full. One
problem is determining the function or relative weights
of the metrics. The method used here is to measure
the performance gains of the metrics independently
and use this data to suggest good weights. Although
there can clearly be a complex interaction between the
strategies, this is a relatively reasonable and objective
approximation. Table I shows the process by which the
worst case is selected for deletion.

C. Activation for Forgetting

The final strategy evaluated is based on spreading
activation. Each caseC has an activation levelAC

associated with it, and a case is activated upon certain
events. When a case is first created, it is activated by a
constantα:

AC = α (4)

Subsequently, when a case is selected for use it
is activated. Its activation level is proportional to its
similarity to the current environment,SC,E:

AC = AC +SC,E ∗λ , 0≤ λ ≤ 1 (5)

When the success S(C) of a case is changed, it is
activated as well by an amount proportional to the
change (which can be negative):

AC = AC+ M S(C)∗σ , 0≤ σ ≤ 1 (6)

The activation level of all cases decreases as time
passes:

AC = AC ∗ γ, 0≤ γ ≤ 1 (7)

This strategy accounts for some of the metrics used
in the previously described strategy. For instance, ac-
tivating a case when used accounts for recency, and
success is accounted for by the change in activation
corresponding to change in success. There are some
differences, however. The first difference is that some
history is automatically maintained; previous activations
of the case will remain for several time steps (how long
depends on constants such as decay rate). When using
the metrics alone, only the values of the metrics in the
current time step are used. The second difference lies
in the spreading activation. When a case is activated,
cases that are similar to it (in terms of input space)
are activated as well but with a decayed amount. The
amount is also proportional to its similarity with the
initially activated case. This is computed as follows
(suppose CaseC has just been activated by amountA):

AC′ = AC′ +A∗µ ∗SC,C′ ,

(∀C
′ 6= C) ∈ L 0≤ µ ≤ 1 (8)

The justification is that usually, environments tend
to change slowly. Hence cases that are similar to the
currently used case should be kept in the event that the
situation changes slightly. The deletion policy is based
on the activation level of the cases: The case that is least
activated and whose activation is below a threshold is
selected for deletion. The threshold prevents cases from
being deleted if all cases happen to be highly activated.
The pseudocode for this strategy is similar to Table
I except that instead ofWeightedMetrics(Case), ACase

(the activation of the case) is used.

IV. EXPERIMENTAL RESULTS

The modified system with the various forgetting
strategies was implemented and tested inMissionLab’s
simulation environment. For all experiments the case
library was of size seven, and navigation was conducted
using a modifiedGOTO behavior containing Swirl,
where obstacle avoidance vectors circulate around the
obstacles [10]. This usually leads to better performance
and hence would favor a purely reactive system. All
training was done twice to obtain two different case
libraries, and all results are averages of these libraries.
There were some differences in the performance be-
tween the case libraries for certain strategies, mainly

Fig. 3. Homogeneous environment in which the case library was
trained and tested. The environment shown here is with a fifteen
percent density. Other densities were used for training and testing
as well.

Fig. 4. Heterogeneous-1 environment, with several different phases
in which the obstacle patterns are changed.

in the random andrecencymetric strategies. All stated
results are statistically significant, and in fact the more
successful strategies resulted in the additional benefit of
smaller standard deviations. The thresholds for deletion
were chosen to be 40% of the maximum values (the
values were not optimized in any way). The metrics
used to judge performance were the average distance
traveled to complete the missions (in meters), as well
as the percentage of missions completed.

The first environment the simulated robot was trained
in consisted of a homogeneous environment with ran-
domly placed obstacles in a particular density, as shown
in Figure 3. Five densities were used for training: 0, 5,
10, 15, 20, and 25 percent clutter. During training, two
versions (with different random seeds) for each density
was used, and these maps were used for training ten
times. The system was then trained on six empty maps
without obstacles, consistent with previous work. The

Fig. 5. This graph shows the distance traveled by the robots
during the missions. Three obstacle densities were tested for the
homogeneous maps. Notice theperformanceand weightedmetrics
outperformed both the purely reactive system as well as the original
CBR architecture for higher densities.

Fig. 6. Distance traveled during missions in the Heterogeneous-
1 environment. Once again, theperformanceand weightedmetrics
performed extremely well, with theuse frequencyandrecencymetrics
performing comparably. The purely reactive version only finished 78
percent of missions and hence did not perform very well.

complete training cycle was repeated twice, giving a
total number of 242 training missions.

The resulting case libraries for each strategy were
then frozen. No learning of new cases or fine tuning of
existing cases occurred during evaluation. The libraries
were tested on both the homogeneous environments as
well as heterogeneous environments. Each of the three
densities for the homogeneous environment was tested
on 100 maps (two random seeds 50 times each). The
average distance traveled during these tests can be seen
in Figure 5. In the easier maps with lower obstacle den-
sities, forgetting did not have an impact on performance
and in fact reduced it by a small amount. However,
with a 20 percent density, the CBR module without
forgetting and the purely reactive system both did not
scale well and performed poorly. Theweighted metrics

Fig. 7. Heterogeneous-2 environment - A different environment with
several different patterns of obstacles, including a box canyon.

andperformancemetric were the most successful, with
the use frequencymetric performing almost as well. It
is of interest that theperformancemetric had many
more cases with a success rate above zero than the
use frequencymetric did (five and a half versus two
on average, respectively) yet it performed almost as
well. The other strategies did not scale. As expected, the
random deletion strategy performed worst. In terms of
the number of missions completed, most of the systems
using CBR completed in the range of 90 percent of the
missions, except the random strategy which completed
about half in the harder maps. The reactive version
completed all of the missions for the first two densities,
but only about 64 percent of the hardest environment
with an obstacle density of 20 percent.

The testing on heterogeneous environments was con-
ducted on four different maps with several variations,
totaling to 54 runs. The environments, shown in Figure
4, are referred to here as Heterogeneous-1. Figure 6
shows the results of the testing. Once again, theperfor-
mancemetric and theweighted metricsperformed the
best among the strategies proposed here, with theuse
frequencyand recencymetrics performing comparably,
and slightly beat the system without forgetting. They
also completed more missions than the system without
forgetting, with a difference of about four percent. The
rest performed about as well or worse than the original.
In this case, the purely reactive version did fairly badly
because it completed much fewer missions. All of the
modules using CBR completed most of the missions but
the reactive version only completed about 78 percent
of them. Furthermore, training was not conducted on
this type of environment at all, and the parameters
of the reactive version were manually optimized for
this environment. This shows that the cases learned
in the original homogeneous environment are relatively

Fig. 8. Distance traveled during missions in the Heterogeneous-2
environment. The “fresh training” version is the case library that was
trained on the Heterogeneous-2 environment starting with an empty
library. The other started training using the case library that resulted
from previous training on the homogeneous environment. Notice the
performance for the successful forgetting strategies was almost the
same in both versions, whereas the original CBR module degraded in
performance when it was re-trained on a new environment.

general and are applicable in other situations. Figure
4 shows a robot run that used theperformancemetric
strategy during evaluation. It can be seen that the case
library includes cases for tight situations where squeez-
ing through a dense obstacle field is required.

In order to verify that the robot can forget cases which
are no longer relevant to its current situation, the case
library from the first training session was unfrozen and
used for training on a completely different environment
(referred to here as Heterogeneous-2). Training was
also conducted on these environments starting from an
empty library, in order to compare the performance
when trained solely on the new environment versus
when training uses a previously trained library. Three
maps similar to Figure 7 were used for training, in
addition to empty environments, with a total of 132
missions. As can be seen, the environment is completely
different, with various patterns of obstacles, including a
box canyon. After training, the maps were modified in
various ways, and testing was conducted on three maps
with three variations each, for ten times each yielding a
total of 90 testing runs.

As can be seen from Figure 8, when the training used
an initially empty library most CBR systems performed
about equally well, except for therecencymetric. All the
CBR systems outperformed the reactive-only architec-
ture significantly, since the environment consisted of box
canyons which purely reactive architectures typically
have trouble addressing. The CBR modules, however,
learned useful cases for the box canyon situation and
were able to consistently escape from it. When training
was performed using the library from the homogeneous

environment training, the advantages of forgetting be-
came apparent. The performance of the system without
forgetting decreased by a large amount, but when using
the successful forgetting strategies, the performance was
almost the same as when using an empty library. There
was slight degradation for some of the metrics especially
regarding the number of missions completed, but the
system with forgetting faired better than without.

Furthermore, many of the forgetting strategies were
able to retain successful cases from the original homoge-
neous environment that were also useful in the new en-
vironment. Figure 9 shows the number of cases in each
library after training whose success rate was above zero.
This is only one of the metrics used, but it shows that
most forgetting strategies resulted in more converged
cases than the previous architecture. All resulted in
libraries with cases for an empty environment in which
none of the four regions around the robot are obstructed
by obstacles. Some of the more successful strategies had
cases for which the robot was surrounded by a particular
pattern of obstacles and the noise persistence was set to
a low value. Such cases represent parameters that the
robot can use to maneuver out of tight spaces.

Cases that were successful in the homogeneous en-
vironment but were not useful for the new environment
were usually removed, since the various metrics such as
case use and case success decreased. This is why some
strategies had fewer successful cases after re-training
than they started with. However, this also occurred for
the other forgetting strategies even if they ended up
with more total successful cases, although this cannot
be seen from the graph. In many instances unsuccessful
cases were replaced by new successful ones. This shows
that the forgetting strategies can indeed selectively retain
cases from the old environment that are still useful,
discard those that are not, and learn new ones in the
place of the unsuccessful ones. As seen in Figure 7, the
robot using theperformancemetric strategy was able to
learn cases for getting out of the box canyon quickly.

Different library sizes were tried in order to as-
certain the efficacy of forgetting when the library is
large. Sizes of 4, 7, 10, and 20 were tried since the
maximum number of cases created by the architecture
never reached 20 even with an unlimited case library.
Figure 10 shows the results of these experiments. As
can be seen, with small sizes forgetting is extremely
advantageous and produces significant performance in-
creases. One notable exception is a library of size 4
in the heterogeneous environment. This shows that the
performance of the system can be less stable when the
library is too small. As the size grows larger, however,
the performance of the two systems converged since
forgetting never occurred due to the large case library

Fig. 9. Number of cases with success rates above zero after training.
The performancemetric uses exactly this criteria in removing cases,
so it is not surprising that it has the most converged cases. Other
forgetting strategies resulted in more converged cases as well.

size. This shows that in situations in which memory
is restricted or the environment is complex, forgetting
should be applied. It would be interesting to see if
periodically forgetting could improve performance even
when memory is unlimited. To that end, the weighted
metric mechanism was tested on the homogeneous and
heterogeneous environments. It did not result in any
performance increase in these environments, although
it has not been tested when the robot is trained on
one environment and then moved to a drastically new
environment. This is where forgetting has been shown
to be the most beneficial.

V. CONCLUSIONS

The results of this research clearly show that the
performanceand use frequencymetrics result in the
best overall performance, both in terms of distance
traveled and missions completed. Theweighted metrics,
in which the weights are proportional to the perfor-
mance of the individual metrics alone, seemed to inherit
the advantages of both of the successful metrics. The
spreading activation mechanism did not perform as well
and was actually slightly worse than the architecture
without forgetting. There are many possible reasons for
this. It was originally anticipated that much like the
metric strategies, the thresholds and constant parameters
could be set to reasonable values and the system would
work well. However, in the spreading activation strategy,
careful thought has to go into selecting the constant
thresholds. In the current system, the activation that is
given when a case is used is approximately equal to
the activation rates given when other events occur. This
should likely not be the case since certain events, such
as when a case is being used, occur many orders of
magnitude more frequently than others. This means that
such events are given more weight, and the parameters

Fig. 10. Performance of forgetting with weighted metrics (CBRF)
and non-forgetting systems (CBR) as the case library size is varied.

should be adjusted accordingly. This will be addressed
in future work.

The recencymetric also did not perform as well and
exhibited unstable behavior. This may be a result of
the large amount of thrashing due to the nature of the
metric. In certain areas of the map a few cases are
used frequently, whereas in other parts a different set is
used. This results in the system deleting and re-creating
the same set of cases over and over. Certain threshold
parameters can be adjusted to account for this, but it is
likely that it is just not a good metric. As expected,
the random deletion also performed poorly and was
extremely unstable.

There are many implications of these results. First of
all, forgetting cases that are poor in terms of the metrics
we have defined results in a significant performance
increase. This type of forgetting does not have to be
restricted to situations where there is an environmental
shift during the lifetime of the robot; indeed, signif-
icant performance increases were seen while training
within the same environment. The usefulness of such
a mechanism increases if there is an environmental
shift, however. The robot can retain the knowledge it
has acquired through experience, but only if it is still
useful for its current situation. Another important result
that has been shown is that the Case-Based Reasoning
system can indeed learn general cases that are useful
in many different situations, as shown by the fact that
there were cases that continued to prove successful in

a drastically different environment. The environments
were not engineered for this to happen; it occurred
automatically. Finally, it is important to note that many
of the metrics used here are not specific to the current
navigational system. For example, theuse frequency
metric performed quite well and can be applied to
any CBR system. Furthermore, unless all of the cases
have optimal knowledge, case success can probably be
measured in many systems.

Another implication of these results is that instead
of training the robot in an environment and then halting
the learning mechanisms, the robot can continue training
throughout its lifetime, i.e., lifelong learning is possible.
One questions that this work has not addressed is the
performance of the robot during training. Even if the
performance is not good there are various ways that
this can be addressed. For example, the robot can have
certain thresholds based on measurements such as how
many new situations not reflected in the library it has
encountered, and if it is below this threshold it can halt
training. It can later restart training when and if it detects
that it has entered a drastically new environment. Future
work can be done in the area of periodic forgetting and
its performance during an environmental shift.

ACKNOWLEDGMENT

The authors would like to thank Michael Kaess for
his initial work on the metrics used.

REFERENCES

[1] Likhachev, M. and Arkin, R.C., “Spatio-Temporal Case-Based
Reasoning for Behavioral Selection,” Proc. 2001 IEEE Interna-
tional Conference on Robotics and Automation, pp. 1627–1634.
2001.

[2] Likhachev, M., Kaess, M., and Arkin, R.C., “Learning Behav-
ioral Parameterization Using Spatio-Temporal Case-Based Rea-
soning,” Proc. 2002 IEEE International Conference on Robotics
and Automation, Vol. 2, pp. 1282–1289, 2002.

[3] Kolodner, J., Case Based Reasoning, Morgan Kaufmann Pub-
lishers, San Mateo, 1993.

[4] Markovitch, S. and Scott, P., “The role of forgetting in learning,”
In Machine Learning: Proc. of the Fifth Intl. Conf., pp. 459-465.
San Mateo: Morgan Kaufmann. 1988.

[6] Watanabe, H., Okuda, K., and Fukiwara, S., “A Strategy for
Forgetting Cases by Restricting Memory,” IEICE Transactions
on Information and Systems, pp. 1324–1326, October 1995.

[5] Smyth, B. and Keane, M., “Remembering to forget: A
competence-preserving case deletion policy for case-based rea-
soning systems,” Proc. 13th International Joint Conference on
Artificial Intelligence, pp. 377–382. Montreal: IJCAI, 1995.

[7] Lieber, J., Haton, J.P., Keane, M., and Manago, M., “A criterion
of Comparison Between Two Case Bases”, Advances in Case-
Based Reasoning, Second European Workshop, pp. 87–100.
November 1994.

[8] Mackenzie, D., Arkin, R.C., and Cameron, J, “Multiagent Mis-
sion Specification and Execution,” Autonomous Robots, 4(1), pp.
29–57, 1997.

[9] Arkin, R.C. and Balch, T., “AuRA: Principles and Practice
in Review,” Journal of Experimental and Theoretical Artificial
Intelligence, 9(2), pp. 175–189, 1997.

[10] Arkin, R.C., Behavior-based Robotics, MIT Press, 1998.

